## **MINIREVIEW**

# Vitamin B<sub>12</sub> Sources and Bioavailability

### FUMIO WATANABE<sup>1</sup>

School of Agricultural, Biological and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan

The usual dietary sources of vitamin B<sub>12</sub> are animal foods, meat, milk, egg, fish, and shellfish. As the intrinsic factor-mediated intestinal absorption system is estimated to be saturated at about 1.5-2.0 µg per meal under physiologic conditions, vitamin B<sub>12</sub> bioavailability significantly decreases with increasing intake of vitamin B<sub>12</sub> per meal. The bioavailability of vitamin B<sub>12</sub> in healthy humans from fish meat, sheep meat, and chicken meat averaged 42%, 56%-89%, and 61%-66%, respectively. Vitamin B<sub>12</sub> in eggs seems to be poorly absorbed (<9%) relative to other animal food products. In the Dietary Reference Intakes in the United States and Japan, it is assumed that 50% of dietary vitamin B<sub>12</sub> is absorbed by healthy adults with normal gastrointestinal function. Some plant foods, dried green and purple lavers (nori) contain substantial amounts of vitamin B<sub>12</sub>, although other edible algae contained none or only traces of vitamin B<sub>12</sub>. Most of the edible blue-green algae (cyanobacteria) used for human supplements predominately contain pseudovitamin B<sub>12</sub>, which is inactive in humans. The edible cyanobacteria are not suitable for use as vitamin B<sub>12</sub> sources, especially in vegans. Fortified breakfast cereals are a particularly valuable source of vitamin B<sub>12</sub> for vegans and elderly people. Production of some vitamin B<sub>12</sub>-enriched vegetables is also being devised. Exp Biol Med 232:1266-1274, 2007

**Key words:** vitamin B<sub>12</sub>; cobalamin; food source; bioavailability; deficiency; human

vitamin  $B_{12}$  is the largest (molecular weight = 1355.4) and most complex of all the vitamins. Although the scientific use of the term "vitamin"

This research was supported in part by a fund for Comprehensive Research on Cardiovascular Diseases from The Ministry of Health, Labor, and Welfare of Japan.

DOI: 10.3181/0703-MR-67 1535-3702/07/23210-1266\$15.00

Copyright © 2007 by the Society for Experimental Biology and Medicine

 $B_{12}$ " is usually restricted to cyanocobalamin, vitamin  $B_{12}$  represents all potentially biologically active cobalamins in this review. Cobalamin is the term used to refer to a group of cobalt-containing compounds (corrinoids) that have a lower axial ligand that contains the cobalt-coordinated nucleotide (5, 6-dimethylbenzimidazole as a base; Fig. 1). Cyanocobalamin, which is used in most supplements, is readily converted to the coenzyme forms of cobalamin (methylcobalamin and 5'-deoxyadenosylcobalamin) in the human body (1).

Vitamin  $B_{12}$  is synthesized only in certain bacteria (2). The vitamin B<sub>12</sub> synthesized by bacteria is concentrated mainly in the bodies of higher predatory organisms in the natural food chain system. Animal foods (i.e., meat, milk, egg, fish, and shellfish) but not plant foods are considered to be the major dietary sources of vitamin  $B_{12}$  (1). Some plant foods, such as edible algae or blue-green algae (cyanobacteria), however, contain large amounts of vitamin  $B_{12}$ . Vitamin B<sub>12</sub> compounds in algae appear to be inactive in mammals (3). Foods contain various vitamin  $B_{12}$  compounds with different upper ligands; methylcobalamin and 5'-deoxyadenosylcobalamin function, respectively, as coenzymes of methionine synthase (EC 2.1.1.13), which is involved in methionine biosynthesis and of methylmolonyl-CoA mutase (EC 5.4.99.2), which is involved in amino acid and odd-chain fatty acid metabolism in mammalian cells (4,

Humans have a complex process for gastrointestinal absorption of dietary vitamin  $B_{12}$  (6). Vitamin  $B_{12}$  released from food protein is first bound to haptocorrin (salivary vitamin  $B_{12}$ -binding protein) in the stomach. After proteolysis of haptocorrin-vitamin  $B_{12}$  complex by pancreatic proteases in the duodenum, the released vitamin  $B_{12}$ -binding protein) in the proximal ileum. The IF-vitamin  $B_{12}$ -binding protein) in the proximal ileum. The IF-vitamin  $B_{12}$  complex can enter mucosal cells in the distal ileum by receptor-mediated endocytosis. Bioavailability of dietary vitamin  $B_{12}$  is significantly dependent on this gastrointestinal absorption

<sup>&</sup>lt;sup>1</sup> To whom correspondence should be addressed at School of Agricultural, Biological and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan. E-mail: watanabe@muses.tottori-u. ac.jp

Figure 1. Structural formula of vitamin  $B_{12}$  and partial structures of vitamin  $B_{12}$  compounds. The partial structures of vitamin  $B_{12}$  compounds show only those portions of the molecule that differ from vitamin  $B_{12}$ . 1: 5'-deoxyadenosylcobalamin; 2, methylcobalamin; 3, hydroxocobalamin; 4, sulfitocobalamin; 5, cyanocobalamin or vitamin  $B_{12}$ .

system. In the Dietary Reference Intakes in the United States, it is assumed that 50% of dietary vitamin  $B_{12}$  is absorbed by healthy adults (7); however, there are few data on the bioavailability of vitamin  $B_{12}$  from foods. In this article presented here, up-to-date information is reviewed on vitamin  $B_{12}$  content and bioavailability in various foods in relation to the prevention of vitamin  $B_{12}$  deficiency.

# Requirements of Vitamin $B_{12}$ and Vitamin $B_{12}$ Deficiency

The major signs of vitamin B<sub>12</sub> deficiency are megaloblastic anemia and neuropathy (7). Strict vegetarians (vegans) have a greater risk of developing vitamin B<sub>12</sub> deficiency relative to nonvegetarians (8) and must consume vitamin B<sub>12</sub>-fortified foods or vitamin B<sub>12</sub>-containing dietary supplements to prevent vitamin B<sub>12</sub> deficiency. A considerable proportion of elderly subjects having low serum vitamin B<sub>12</sub> levels without pernicious anemia have been reported to have malabsorption of protein-bound vitamin B<sub>12</sub> (food-bound vitamin B<sub>12</sub> malabsorption; Ref. 9). The food-bound vitamin B<sub>12</sub> malabsorption is found in patients with certain gastric dysfunctions, such as atrophic gastritis with decreased stomach acid secretion (10). Because the bioavailability of crystalline vitamin  $B_{12}$  is not altered in patients with atrophic gastritis, the Institute of Medicine recommended that adults 51 years and older should obtain the majority of the recommended dietary allowance (RDA) of vitamin B<sub>12</sub> through the consumption of foods fortified with crystalline vitamin B<sub>12</sub> or vitamin B<sub>12</sub>-containing supplements (7). Seal et al. (11) reported

that a slightly higher dose (50  $\mu$ g/day) of vitamin  $B_{12}$  supplementation significantly increases serum vitamin  $B_{12}$  concentrations in older patients with subnormal vitamin  $B_{12}$  status.

The RDA of vitamin  $B_{12}$  for adults is set at 2.4 µg/day in the United States (and Japan); however, daily body loss of the vitamin is estimated to be between 2 and 5 µg/day (7). Bor *et al.* (12) reported that a daily vitamin  $B_{12}$  intake of 6 µg appears to be sufficient to maintain a steady-state concentration of plasma vitamin  $B_{12}$  and vitamin  $B_{12}$ -related metabolic markers.

#### Assay of Vitamin $B_{12}$ in Foods

Historically, vitamin  $B_{12}$  content of foods has been determined by bioassay with certain vitamin  $B_{12}$ —requiring microorganisms, such as *Lactobacillus delbrueckii* subsp. *lactis* ATCC7830 (formerly *Lactobacillus leichmannii*; Ref. 13). Radioisotope dilution assay (RIDA) method with radiolabeled vitamin  $B_{12}$  and hog IF (the most specific vitamin  $B_{12}$ —binding protein) has also been used for the determination of vitamin  $B_{12}$  content in foods (14). Although it was reported that the values determined by the RIDA method were slightly higher in human serum than those determined by the microbiologic method (15), Casey *et al.* (14) demonstrated the excellent correlation between both methods in food vitamin  $B_{12}$  analysis.

A fully automated chemiluminescence vitamin  $B_{12}$  analyzer with the acridinium ester–labeled vitamin  $B_{12}$  derivative and IF has been commercialized. Currently, various types of similar vitamin  $B_{12}$  analyzers are being

manufactured and clinically used for the routine assay of human serum vitamin  $B_{12}$  worldwide. About 10 years ago, my colleagues and I evaluated the applicability of this machine in food analysis, indicating the excellent correlation coefficient between both methods in most foods tested, although in some specific foods the values determined by the microbiologic method were about several-fold greater than the values determined by the chemiluminescence method (16). This difference may be due to the fact that L. delbrueckii used for the microbiologic assay of food vitamin B<sub>12</sub> uses corrinoid compounds that are inactive for humans as well as vitamin  $B_{12}$ . Ball (1) stated that about 30% of the reported vitamin B<sub>12</sub> in foods may be microbiologically active corrinoids rather than vitamin B<sub>12</sub>. Furthermore, it is known that both deoxyribosides and deoxynucleotides (known as the alkali-resistant factor) can substitute vitamin  $B_{12}$  in this lactic bacterium (17).

#### Vitamin $B_{12}$ in Animal Food

**Meat.** In the United States Department of Agriculture database, vitamin  $B_{12}$  contents of cooked beef liver, lean meat, and turkey are estimated to be 83, 3, and 33  $\mu$ g/100 g, respectively (18). Appreciable losses (~33%) of vitamin  $B_{12}$  in meats by cooking have been reported (19, 20).

Bioavailability of vitamin  $B_{12}$  from 100 g (0.9  $\mu$ g vitamin  $B_{12}$ ), 200 g (3.0  $\mu$ g), and 300 g (5.1  $\mu$ g) of ground patties cooked from mutton (labeled with radioactive vitamin  $B_{12}$ ) in normal human subjects averaged 56%–77%, 76%–89%, and 40%–63%, respectively (21). An average absorption of vitamin  $B_{12}$  from liver pâté (38  $\mu$ g vitamin  $B_{12}$ ) is approximately 10%. Since the IF-mediated intestinal absorption system is estimated to be saturated at about 1.5–2.0  $\mu$ g per meal under the physiologic conditions (22), vitamin  $B_{12}$  bioavailability should decrease significantly with increases in the intake of vitamin  $B_{12}$  per meal.

Absorption of vitamin  $B_{12}$ , assessed by measuring fecal excretion of radioactivity, after consuming 100 g (0.4–0.6  $\mu$ g vitamin  $B_{12}$ ), 200 g (0.8–1.3  $\mu$ g), and 300 g (1.3–1.9  $\mu$ g) of chicken meat (labeled with radioactive vitamin  $B_{12}$ ) in healthy human subjects averaged 65%, 63%, and 61%, respectively (23).

**Milk.** Although vitamin  $B_{12}$  content (0.3–0.4 μg/100 g) of various types of milk is not high (18), milk and dairy products are significant contributors of vitamin  $B_{12}$  intakes, since the intake of dairy products is high in the general population (7). In bovine milk, all naturally occurring vitamin  $B_{12}$  is bound to the transcobalamin, one of the mammalian vitamin  $B_{12}$ -binding proteins (24). When radioactive vitamin  $B_{12}$  (0.25 μg) mixed in water or milk was administered to human subjects, the mean absorption, as assessed by a whole-body counting of radioactivity, was 55% or 65%, respectively (25).

Appreciable losses of vitamin  $B_{12}$  have been reported during the processing of milk; boiling for 2–5 min and 30 min resulted in 30% and 50% loss, respectively (1, 20). The

5-min microwave cooking led to 50% loss and 5%–10% lost by pasteurization (1, 20). When various milk samples were exposed to fluorescent light for 24 hrs at 4°C, the vitamin  $B_{12}$  concentration decreased considerably, depending on the type of milk tested (26). On the other hand, when the pasteurized milk was refrigerated for 9 days under retail-simulating or domestic handling conditions, there was no appreciable decline in the concentration of milk vitamin  $B_{12}$  (27).

Vitamin  $B_{12}$  concentrations in fermented milk decreased significantly during storage at 4°C for 14 days relative to the original milk. About 20%–60% of vitamin  $B_{12}$  that is originally presented in milk is recovered in cottage cheese, hard cheese, and blue cheese (28). Sato *et al.* (29) demonstrated that the content of vitamin  $B_{12}$  in the whey is reduced considerably during lactic acid fermentation. This decrease in vitamin  $B_{12}$  content in whey is due to the production of vitamin  $B_{12}$  compounds that are not easily extracted for detection by conventional extraction method. Although the vitamin  $B_{12}$  compounds could be extracted by sonication and treatment by proteases, such as pepsin and papain, no information is available on any chemical properties of these compounds (29).

**Egg.** Vitamin  $B_{12}$  content in the whole egg is about 0.9–1.4 μg/100 g (18, 30), and most of the vitamin  $B_{12}$  is found in the egg yolk (31). Vitamin  $B_{12}$  intakes from the egg are generally large, because it is a popular food item (7). Bioavailability of vitamin  $B_{12}$  from scrambled egg yolks, scrambled whole eggs, boiled eggs, and fried eggs (1.1–1.4 μg vitamin  $B_{12}$  per 100 g) averaged 8.2%, 3.7%, 8.9%, and 9.2%, respectively (30). Vitamin  $B_{12}$  in eggs is generally poorly absorbed relative to other animal food products (32).

**Shellfish.** Various shellfish are consumed widely. The shellfish that siphon large quantities of vitamin B<sub>12</sub>synthesizing microorganisms in the sea are known to be excellent sources of vitamin B<sub>12</sub>, of which concentrations can exceed sometimes 10  $\mu$ g/100 g (33). The vitamin B<sub>12</sub>synthesizing microorganisms can also synthesize various corrinoids (including corrinoid compounds inactive for humans) with different bases in the lower ligand. When corrinoid compounds were isolated and characterized in popular shellfish, such as oysters, mussels, and short-necked clams, each corrinoid compound was identified as vitamin  $B_{12}$  (34). The higher values in the determination of vitamin B<sub>12</sub> by the microbiologic method compared with the chemiluminesence method may be due to occurrence of certain vitamin B<sub>12</sub>-substitutive compounds, of which chemical properties have not been characterized.

**Fish.** Fish (or shellfish) contribute greatly to vitamin  $B_{12}$  intake among Asians, particularly Japanese people, and this trend is spreading throughout the world (35). In the USDA database, vitamin  $B_{12}$  contents of certain fish (salmon, sardine, trout, tuna, etc.) are 3.0 to 8.9 μg/100 g (18). Based on our studies, the dark muscle of skipjack contains a substantial amount (159 μg/100 g) of vitamin  $B_{12}$  compared with the light muscle (dorsal portion 10 μg/100 g;

ventral portion 8  $\mu$ g/100 g; Ref. 36). When a corrinoid compound was isolated and characterized in the dark muscle, it was identified as vitamin B<sub>12</sub>. Similar results of high vitamin B<sub>12</sub> content in dark muscle were found in the yellowfin tuna (37).

Various commercially available soup stocks, which are mainly made of dried bonito shavings and dried sardines, contain considerable amounts (0.2 to 1.2  $\mu$ g/100 ml) of free vitamin B<sub>12</sub>, indicating that these may be excellent free vitamin B<sub>12</sub> sources.<sup>1</sup> The loss of vitamin B<sub>12</sub> from fish meat by various cooking methods (boiling, steaming, sautéing, frying, and microwaving) was not high, with a range of 2.3%–14.8% (36).

Doscherholmen *et al.* (38) measured the bioavailability of radioactive vitamin  $B_{12}$  that was injected into the rainbow trout. A few weeks after this injection, the bioavailability of vitamin  $B_{12}$  from the fish meat was evaluated. The bioavailabilities of labeled vitamin  $B_{12}$  in 50 g (equivalent to 2.1 µg vitamin  $B_{12}$ ), 100 g (4.1 µg), 200 g (9.2 µg), and 300 g (13.3 µg) of fish meat were 42%, 38%, 42%, and 30%, respectively.

Salted and Fermented Fish. The highest amount of vitamin B<sub>12</sub> among foods described in the Japanese Standard Tables of Food Composition is 328 µg/100 g in salted and fermented salmon kidney that is called "Mefun" (39). Eating only 0.8 g Mefun can supply the total RDA (2.4) μg/day) for the adult population. Although this item has a delicate flavor, it has an extremely limited application, since it is popular only in Japan. It might be interesting, however, to describe the characterization of vitamin B<sub>12</sub> in this item, which may potentially have the highest vitamin B<sub>12</sub> content in nature. The vitamin B<sub>12</sub> found in Mefun is not derived from concomitant vitamin B<sub>12</sub>-synthesizing bacteria, but is accumulated in the salmon kidney. The majority of vitamin B<sub>12</sub> found in Mefun was recovered in the free vitamin B<sub>12</sub> fractions (40). Mefun may be an excellent free vitamin B<sub>12</sub> source for elderly subjects with food-bound vitamin B<sub>12</sub> malabsorption.

**Fish Sauce.** Various kinds of fish sauces, traditional food supplements in the diet, are widely used as a seasoning worldwide. Fish sauce (Nam-pla) appears to constitute a major source of vitamin  $B_{12}$  in Thailand, since it contains considerable amounts of vitamin  $B_{12}$  (41). A considerable amount of vitamin  $B_{12}$  (range: 2.3 to 5.5  $\mu$ g/100 g) was also found in "Ishiru" (a Japanese traditional fish sauce; Ref. 42). When two corrinoid compounds in the fish sauce were isolated and characterized, the main compound was identified as vitamin  $B_{12}$ , but the other minor compound could not be identified (42). Corrinoid compounds found in various fish sauces made in Japan could not be identified (43). Fish sauce may not be suitable for use as a source of vitamin  $B_{12}$ , considering the low daily intake of the sauce and occurrence of the unidentified corrinoid compounds.

### Vitamin B<sub>12</sub> in Plant Food

Vegetables. Many studies have been performed to measure vitamin B<sub>12</sub> content in various vegetables. For decades, edible bamboo shoots have been believed to contain considerable amounts of vitamin B<sub>12</sub>. However, it turned out that they do not contain appreciable amounts of vitamin B<sub>12</sub>; however, certain compounds showing vitamin B<sub>12</sub>-like activity (known as the alkali-resistant factor) were found in them (44). Similar results were found in cabbage, spinach, celery, garland chrysanthermum, lily bulb, and taro (44). Only trace amounts of vitamin  $B_{12}$  (<0.1  $\mu$ g/100 g of wet weight edible portion), which was estimated by subtracting the alkali-resistant factor from total vitamin B<sub>12</sub>, were found in broccoli, asparagus, Japanese butterbur, mung bean sprouts, tassa jute, and water shield (44). These vegetables may have the ability to take up vitamin B<sub>12</sub> found in certain organic fertilizer.

Mozafar (45) demonstrated that the addition of an organic fertilizer, cow manure, significantly increases the vitamin  $B_{12}$  content in barley kernels and spinach leaves. Mozafar and Oeftli (46) investigated uptake of vitamin  $B_{12}$  by soybean roots under water culture conditions. Sato *et al.* (47) reported that a high level of vitamin  $B_{12}$  is incorporated into a vegetable, kaiware daikon (radish sprout), by soaking its seeds in vitamin  $B_{12}$  solutions before germination. The amount of vitamin  $B_{12}$  incorporated into kaiware daikon increases up to about 170 µg/100 g of wet sprout with 3-hr soaking of seeds in 200 µg/ml vitamin  $B_{12}$  solution. These vitamin  $B_{12}$ —enriched vegetables may be of special benefit to vegans or elderly persons with food-bound vitamin  $B_{12}$  malabsorption.

**Tea Leaves and Tea Drinks.** Considerable amounts of vitamin  $B_{12}$  are found in various types of tea leaves: green (0.1–0.5  $\mu$ g vitamin  $B_{12}$  per 100 g dry weight), blue (about 0.5  $\mu$ g), red (about 0.7  $\mu$ g), and black (0.3–1.2  $\mu$ g) tea leaves (48).

When a corrinoid compound was isolated from Japanese fermented black tea (Batabata-cha), the compound was identified as vitamin  $B_{12}$  (49). When vitamin  $B_{12}$ -deficient rats were fed this tea drink (50 ml/day, equivalent to a daily dose of 1 ng vitamin  $B_{12}$ ) for 6 weeks, urinary methylmalonic acid excretion (an index of vitamin  $B_{12}$  deficiency) of the tea drink–supplemented rats decreased significantly compared with that of the deficient rats (49). These results indicate that the vitamin  $B_{12}$  found in the fermented black tea is bioavailable in rats. However, only 1–2 liters of consumption of fermented tea drink (typical regular consumption in Japan), which is equivalent to 20–40 ng vitamin  $B_{12}$ , is not sufficient to meet the RDA of 2.4 µg/day for adult humans.

**Soybean.** Vitamin  $B_{12}$  contents of soybean are low or undetectable. A soybean-fermented food, tempe, contains a large amount of vitamin  $B_{12}$  (0.7 to 8 µg/100 g; Ref. 50). Certain bacteria contamination during the process of tempe production may contribute to the vitamin  $B_{12}$  increase of

<sup>&</sup>lt;sup>1</sup>Nishioka M, Miyamoto E, and Watanabe F. Unpublished data.

tempe (51). Another fermented soybean, natto, contains a minute amount of vitamin  $B_{12}$  (0.1 to 1.5  $\mu$ g/100 g; Ref. 52).

**Edible Algae.** Various types of edible algae are used for human consumption the world over. Dried green (Enteromorpha sp.) and purple (Porphyra sp.) lavers (nori) are the most widely consumed among the edible algae and contain substantial amounts of vitamin  $B_{12}$  (32 to 78 µg/100 g dry weight; Ref. 39). In Japanese cooking, several sheets of nori  $(9 \times 3 \text{ cm}; \text{ about } 0.3 \text{ g each})$  are often served for breakfast. A large amount of nori (<6 g) can be consumed from certain sushi, vinegared rice rolled in nori. However, edible algae other than these two species contain none or only traces of vitamin B<sub>12</sub> (39). Dagnelie et al. (53) reported the effect of edible algae on the hematologic status of vitamin B<sub>12</sub>-deficient children, suggesting that algal vitamin  $B_{12}$  appears to be nonbioavailable. As bioavailability of the algal vitamin B<sub>12</sub> is not clear in humans, my colleagues and I characterized corrinoid compounds to determine whether the dried purple and green lavers and eukaryotic microalgae (Chlorella sp. and Pleurochrysis carterae) used for human food supplements contain vitamin B<sub>12</sub> or inactive corrinoids. My colleagues and I found that these edible algae contain a large amount of vitamin B<sub>12</sub> without the presence of inactive corrinoids (54–57).

To measure the bioavailability of vitamin  $B_{12}$  in the lyophilized purple laver (*Porphyra yezoensis*), the effects of feeding the laver on various parameters of vitamin  $B_{12}$  were investigated in vitamin  $B_{12}$ —deficient rats (58). Within 20 days after vitamin  $B_{12}$ —deficient rats were fed a diet supplemented with dried purple laver (10  $\mu$ g vitamin  $B_{12}$ /kg diet), urinary methylmalonic acid excretion became undetectable and hepatic vitamin  $B_{12}$  (especially coenzyme vitamin  $B_{12}$ ) levels significantly increased. These results indicate that vitamin  $B_{12}$  from the purple lavers is bioavailable in rats.

A nutritional analysis for the dietary food intake and serum vitamin  $B_{12}$  level of a group of six vegan children aged 7 to 14 who had been living on a vegan diet including brown rice for 4 to 10 years suggests that consumption of nori may keep vegans from suffering vitamin  $B_{12}$  deficiency (59). Rauma *et al.* (60) also reported that vegans consuming nori and/or chlorella had a serum vitamin  $B_{12}$  concentration twice as high as those not consuming these algae.

Edible Cyanobacteria. Some species of the cyanobacteria, including *Spirulina*, *Aphanizomenon*, and *Nostoc*, are produced at annual rates of 500-3000 tons for food and pharmaceutical industries worldwide (61). Tablets containing *Spirulina* sp. are sold as a health food fad, since it is known to contain a large amount of vitamin  $B_{12}$  (62). We found that commercially available spirulina tablets contained 127–244  $\mu g$  vitamin  $B_{12}$  per 100 g weight (63). When two corrinoid compounds were characterized from the spirulina tablets, the major (83%) and minor (17%) compounds were identified as pseudovitamin  $B_{12}$  (adeninly cobamide) and vitamin  $B_{12}$ , respectively (Fig. 2). Several

groups of investigators indicated that pseudovitamin  $B_{12}$  is hardly absorbed in mammalian intestine with a low affinity to IF (64, 65). Furthermore, researchers showed that spirulina vitamin  $B_{12}$  may not be bioavailable in mammals (63, 66). Herbert (67) reported that an extract of spirulina contains two vitamin  $B_{12}$  compounds that can block the metabolism of vitamin  $B_{12}$ . And van den Berg *et al.* (68) demonstrated that a spirulina-supplemented diet does not induce severe vitamin  $B_{12}$  deficiency in rats, implying that the feeding of spirulina may not interfere with the vitamin  $B_{12}$  metabolism. Further studies are needed to clarify bioavailability of spirulina vitamin  $B_{12}$  in humans.

Aphanizomenon flos-aquae, a fresh water cyanobacterium, grow naturally in Upper Klamath Lake, Oregon. Kay (69) described that the bacterial cells contain some corrinoid compounds that can be used as vitamin  $B_{12}$  in humans. In contrast, my colleagues and I found that the corrinoid compound purified from *Aphanizomenon* cells was identified as pseudovitamin  $B_{12}$ , which is inactive corrinoid for humans (70). We found that the dried bacterial cells contained 616  $\mu$ g vitamin  $B_{12}$  per 100 g weight. *Escherichia coli* 215-bioautography of the *Aphanizomenon* extract indicated that the bacterial cells contained only pseudovitamin  $B_{12}$  (70).

Aphanothece sacrum (Suizenji-nori) is an edible cyanobacterium that is indigenous to Japan. The dried bacterial cells are used as an ordinary food item after soaking in water or a nutritional supplement. The nutrition labeling of this bacterial product shows that the dried cells contain a large amount of vitamin  $B_{12}$  (94 µg/100 g); however, the corrinoid compound purified from the bacterial cells was identified as pseudovitamin  $B_{12}$  (71). Therefore, its nutritional value is questionable. Nostoc commune (Ishikurage) contains considerable amounts (99 µg/100 g) of vitamin B<sub>12</sub> in its dried cells as measured by the microbiologic method; however, only 12% of the vitamin may be active, since the main (88%) and minor (12%) compounds in the bacterial cells were identified as pseudovitamin  $B_{12}$  and vitamin  $B_{12}$ , respectively (72). In summary, the results reviewed above indicate that edible cyanobacteria often contain a large amount of pseudovitamin B<sub>12</sub>, which is known to be biologically inactive in humans. Therefore, they are not suitable for use as a source of vitamin B<sub>12</sub> for the prevention of vitamin B<sub>12</sub> deficiency among the high-risk population, such as vegans and elderly subjects.

**Vitamin B**<sub>12</sub>**–Fortified Cereals.** Ready-to-eat cereals fortified with vitamin  $B_{12}$  are known to constitute a great proportion of dietary vitamin  $B_{12}$  intake in the United States (7). Several groups of investigators suggested that eating a breakfast cereal fortified with folic acid, vitamin  $B_{12}$ , and vitamin  $B_6$  increases blood concentrations of these vitamins and decreases plasma total homocysteine concentrations in elderly populations (73). Fortified breakfast cereals have become a particularly valuable source of vitamin  $B_{12}$  for vegetarians and elderly people.

Figure 2. Structural formula of vitamin  $B_{12}$  and pseudovitamin  $B_{12}$  (7-adeninyl cyanocobamide).

#### Conclusion

Vitamin B<sub>12</sub> contents determined by the microbiologic assay method used widely in food analysis are incorrect in some specific foods, because this lactic bacterium can utilize

inactive corrinoid compounds, such as pseudovitamin B<sub>12</sub>, and substitute both deoxyribosides and deoxynucleotides (known as the alkali-resistant factor) for vitamin  $B_{12}$ . Thus, vitamin B<sub>12</sub> contents should be calculated by subtracting the

**Table 1.** Bioavailability of Dietary Vitamin B<sub>12</sub><sup>a</sup>

| Foods                       | Predominate corrinoid <sup>b</sup> | Bioavailability <sup>c</sup> | Content (μg/100 g)   |
|-----------------------------|------------------------------------|------------------------------|----------------------|
| Animal meats                |                                    |                              |                      |
| Mutton, cooked              |                                    | 56%-89% (21)                 | 2.6 (18)             |
| Chicken, cooked             |                                    | 61%-66% (23)                 | 9.4 (18)             |
| Cow's milk                  |                                    | 65% (2 <del>5</del> )        | 0.4 (18)             |
| Eggs                        |                                    | , ,                          | ,                    |
| Chicken, cooked             |                                    | <9% (31)                     | 1.3 (18)             |
| Shellfish                   |                                    | , ,                          | ,                    |
| Oyster                      | Vitamin B <sub>12</sub> (34)       |                              | 46.3 (34), 28.1 (17) |
| Mussel                      | Vitamin B <sub>12</sub> (34)       |                              | 15.7 (34), 10.3 (17) |
| Short-necked clam           | Vitamin $B_{12}$ (34)              |                              | 37.0 (34), 52.4 (17) |
| Fish meats                  | 12 ( )                             |                              | ( // ( /             |
| Skipjack, dark muscle       | Vitamin B <sub>12</sub> (36)       |                              | 158.5 (36)           |
| Yellowfin tuna, dark muscle | Vitamin B <sub>12</sub> (37)       |                              | 52.9 (37)            |
| Rainbow trout, cooked       | .= \ /                             | 42.0% (38)                   | 4.9 (18)             |
| Edible algae                |                                    | ,                            | ,                    |
| Purple laver                | Vitamin B <sub>12</sub> (54)       |                              | 32.3 (54), 77.6 (17) |
| Green laver                 | Vitamin B <sub>12</sub> (55)       |                              | 63.6 (55), 31.8 (17) |
| Chlorella                   | Vitamin B <sub>12</sub> (56)       |                              | 200.9–211.6 (56)     |

 $<sup>^{\</sup>it a}$  Numbers in parentheses are reference numbers.  $^{\it b}$  Isolated and identified.

 $<sup>^{\</sup>it c}$  intake of <2  $\mu g$  vitamin B<sub>12</sub> per meal in healthy humans.

values of the alkali-resistant factor from the values of total (or apparent) vitamin  $B_{12}$  in all foods tested to prevent overestimating their vitamin  $B_{12}$  contents. Even if IF-based clinical assay kits or analyzers are used for measuring food vitamin  $B_{12}$  content, they may not represent only vitamin  $B_{12}$  because of the possibility that the binding of vitamin  $B_{12}$  to IF is interfered slightly by certain food ingredients or inactive corrinoid compounds, such as pseudovitamin  $B_{12}$ . The difficulty to evaluate whether certain foods contain vitamin  $B_{12}$  or inactive corrinoids may be easily resolved by the use of a simple technique, bioautography with vitamin  $B_{12}$ —dependent E.  $coli\ 215$  after separation of the sample by silica gel 60 thin-layer chromatography (72, 74). The database of vitamin  $B_{12}$  content in foods should be revised in order to accurately assess dietary intakes of vitamin  $B_{12}$ .

Although food items that contribute to the vitamin  $B_{12}$  intake vary widely depending on food cultures or food habits throughout the world, animal products (meat, milk, egg, fish, and shellfish) are excellent sources of vitamin  $B_{12}$  (Table 1). Dried edible cyanobacteria as nutritional supplements may not be suitable for vitamin  $B_{12}$  sources, because the majority of the vitamin in the bacterial cells is pseudovitamin  $B_{12}$ . As technologies advance, various plant foods that contain an appreciable amount of naturally occurring vitamin  $B_{12}$  and are fortified with crystalline vitamin  $B_{12}$  may be available for human consumption to maintain adequate vitamin  $B_{12}$  status in the general population and to prevent vitamin  $B_{12}$  deficiency among vegans or elderly persons.

For the Dietary Reference Intakes in the United States and Japan, it is assumed that 50% of dietary vitamin  $B_{12}$  is absorbed and utilized by healthy adults with a normal gastrointestinal function. Further information on bioavailability of vitamin  $B_{12}$  from various food sources of vitamin  $B_{12}$  is needed to determine more precise RDA of the vitamin.

- 1. Ball GFM. Vitamin  $B_{12}$  In: Bioavailability and Analysis of Vitamins in Foods. London: Chapman & Hall, pp497–515, 1998.
- Scheider Z, Stroiñski A. Biosynthesis of vitamin B<sub>12</sub>. In: Schneider Z, Stroiñski A, Eds. Comprehensive B<sub>12</sub>. Berlin: Walter de Gruyter, pp93–110, 1987.
- Watanabe F, Takenaka S, Kittaka-Katsura H, Ebara S, Miyamoto E. Characterization and bioavailability of vitamin B<sub>12</sub>-compounds from edible algae. J Nutr Sci Vitaminol 48:325–331, 2002.
- Chen Z, Crippen K, Gulati S, Banerjee R. Purification and kinetic mechanism of a mammalian methionine synthase from pig liver. J Biol Chem 269:27193–27197, 1994.
- Fenton WA, Hack AM, Willard HF, Gertler A, Rosenberg LE. Purification and properties of methylmalonyl coenzyme A mutase from human liver. Arch Biochem 228:323–329, 1982.
- 6. Russell-Jones GJ, Aplers DH. Vitamin  $\rm B_{12}$  transporters. Pharm Biotechnol 12:493–520, 1999.
- Institute of Medicine. Vitamin B<sub>12</sub> In: Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B<sub>6</sub>, Folate, Vitamin B<sub>12</sub>, Pantothenic Acid, Biotin, and Choline. Washington, DC: Institute of Medicine, National Academy Press, pp306–356, 1998.

- Millet P, Guilland JC, Fuchs F, Klepping J. Nutrient intake and vitamin status of healthy French vegetarians and nonvegetarians. Am J Clin Nutr 50:718–727, 1989.
- 9. Baik HW, Russell RM. Vitamin  $B_{12}$  deficiency in the elderly. Annu Rev Nutr 19:357–377, 1999.
- Park S, Johson MA. What is an adequate dose of oral vitamin B-12 in older people with poor vitamin B-12 status? Nutr Rev 64:373–378, 2006.
- Seal EC, Metz J, Flicker L, Melny J. A randomized, double-blind, placebo-controlled study of oral vitamin B<sub>12</sub> supplementation in older patients with subnormal or borderline serum vitamin B<sub>12</sub> concentrations. J Am Geriatr Soc 50:146–151, 2002.
- Bor MV, Lydeking-Olesen E, Møller J, Nexø E. A daily intake of approximately 6 μg vitamin B-12 appears to saturate all the vitamin B-12-related variables in Danish postmenopausal women. Am J Clin Nutr 83:52–58. 2006.
- Schneider Z. Purification and estimation of vitamin B<sub>12</sub>. In: Schneider Z, Stroiñski A, Eds. Comprehensive B<sub>12</sub>. Berlin: Walter de Gruyter, pp111–155, 1987.
- Casey PJ, Speckman KR, Ebert FJ, Hobbs WE. Radioisotope dilution technique for determination of vitamin B<sub>12</sub> in foods. J Assoc Off Anal Chem 65:85–88, 1982.
- Arnaud J, Cotisson A, Meffre G, Bourgear-Causse M, Augert C, Favier A, Vuillez JP, Ville G. Comparison of three commercial kits and a microbiological assay for the determination of vitamin B<sub>12</sub> in serum. Scand J Clin Invest 54:235–240, 1994.
- Watanabe F, Takenaka S, Abe K, Tamura Y, Nakano Y. Comparison of a microbiological assay and a fully automated chemiluminescent system for the determination of vitamin B<sub>12</sub> in food. J Agric Food Chem 46:1433–1436, 1998.
- Resources Council, Science and Technology Agency. In: Standard Tables of Food Composition in Japan-Vitamin K, B<sub>6</sub> and B<sub>12</sub>. Tokyo: Resources Council, Science, and Technology Agency, Japan, pp6–56, 1995
- 18. USDA National Nutrient Database for Standard Reference, Release 18. Reports by single nutrients. Vitamin B-12 (μg) content of selected foods per common measure, sorted by nutrient content. USDA Nutrient Data Laboratory. Available at: http://www.ars.usda.gov/services/docs.htm?docid=9673, 2007.
- Bennink MR, Ono K. Vitamin B<sub>12</sub>, E and D content of raw and cooked beef. J Food Sci 47:1786–1792, 1982.
- Watanabe F, Abe K, Fujita T, Goto M, Hiemori M, Nakano Y. Effects of microwave heating on the loss of vitamin B<sub>12</sub> in foods. J Agric Food Chem 46:206–210, 1998.
- Heyssel RM, Bozian RC, Darby WJ, Bell MC. Vitamin B-12 turnover in man. The assimilation of vitamin B-12 from natural foodstuff by man and estimates of minimal daily requirements. Am J Clin Nutr 18:176– 184, 1966.
- Scott JM. Bioavailability of vitamin B<sub>12</sub>. Eur J Clin Nutr 51(Suppl 1): S49–S53, 1997.
- Doscherholmen A, McMahon J, Ripley D. Vitamin B-12 assimilation from chicken meat. Am J Clin Nutr 31:825–830, 1978.
- Fedosov SN, Petersen TE, Nexø E. Transcobalamin form cow milk: isolation and physico-chemical properties. Biochim Biophys Acta 292: 113–119, 1996.
- Russell RM, Baik H, Kehayias JJ. Older man and women efficiently absorb vitamin B-12 from milk and fortified bread. J Nutr 131:291– 293, 2001.
- Watanabe F, Katsura H, Abe K, Nakano Y. Effect of light-induced riboflavin degradation on the loss of cobalamin in milk. J Home Econ Jpn 51:231–234, 2000.
- Andersson I, Öste R. Nutritional quality of pasteurized milk. Vitamin B<sub>12</sub>, folate and ascorbic acid content during storage. Int Dairy J 4:161– 172, 1994.
- 28. Arkbåge K, Witthöft C, Fonden R, Jägerstad M. Retention of vitamin

- B<sub>12</sub> during manufacture of six fermented dairy products using a validated radio protein-binding assay. Int Dairy J 13:101–109, 2003.
- Sato K, Wang X, Mizoguchi K. A modified form of a vitamin B-12 compound extracted from whey fermented by Lactobacillus helveticus. J Dairy Sci 80:2701–2705, 1997.
- 30. Squires MW, Naber EC. Vitamin profiles of eggs as indicators of nutritional status in the laying hen: vitamin  $B_{12}$  study. Poul Sci 71:275–282, 1992.
- Doscherholmen A, McMahon J, Ripley D. Vitamin B<sub>12</sub> absorption from eggs. Proc Soc Exp Biol Med 149:987–990, 1975.
- Doscherholmen A, McMahon J, Ripley D. Inhibitory effect of eggs on vitamin B-12 absorption: description of a simple ovalbumin <sup>57</sup>Covitamin B<sub>12</sub> absorption test. Br J Haematol 33:261–272, 1976.
- Herbert V. Vitamin B<sub>12</sub>. In: Ziegler E, Filer LJ Jr, Eds. Present Knowledge in Nutrition, 7th ed. Washington, DC: International Life Sciences Institute Press, pp191–205, 1996.
- 34. Watanabe F, Katsura H, Takenaka S, Enomoto T, Miyamoto E, Nakatsuka T, Nakano Y. Characterization of vitamin B<sub>12</sub> compounds from edible shellfish, clam, oyster, and mussel. Int J Food Sci Nutr 52: 263–268, 2001.
- Kimura N, Fukuwatari T, Sasaki R, Hayakawa F, Shibata K. Vitamin intake in Japanese women college students. J Nutr Sci Vitaminol 49: 149–155, 2003.
- Nishioka M, Kanosue F, Tanioka Y, Miyamoto E, Watanabe F. Characterization of vitamin B<sub>12</sub> in skipjack meats and loss of the vitamin from the fish meats by various cooking conditions. Vitamins (Japanese) 80:507–511, 2006.
- Nishioka M, Tanioka Y, Miyamoto E, Enomoto T, Watanabe F. TLC analysis of a corrinod compound from dark muscle of the yellowfin tuna (*Thunnus albacares*). J Liq Chrom Rel Technol 30:1–8, 2007.
- Doscherholmen A, McMahon J, Economon P. Vitamin B<sub>12</sub> absorption from fish. Proc Soc Exp Biol Med 167:480–484, 1981.
- Report of the Subdivision on Resources. In: Standard Tables of Food Composition in Japan, 5th ed. The Council for Science and Technology, Ministry of Education, Culture, Sports, Science, and Technology, Japan, pp150–151, 2005.
- Adachi S, Miyamoto E, Watanabe F, Enomoto T, Kuda T, Hayashi M, Nakano, Y. Purification and characterization of a corrinoid compound from a Japanese salted and fermented salmon kidney "Mefun." J Liq Chrom Rel Technol 28:2561–2569, 2005.
- Areekul S, Boonyananta C, Matrakul D, Chantachum Y. Determination of vitamin B<sub>12</sub> in fish sauce in Thailand. J Med Assoc Thailand 55:243– 248, 1972
- Takenaka S, Enomoto T, Tsuyama S, Watanabe F. TLC analysis of corrinoid compounds in fish sauce. J Liq Chrom Rel Technol 26:2703– 2707, 2003.
- Watanabe F, Michihata T, Takenaka S, Kittaka-Katsura H, Enomoto T, Miyamoto E, Adachi A. Purification and characterization of corrinoid compounds from a Japanese fish sauce. J Liq Chrom Rel Technol 27: 2113–2119, 2004.
- Miyamoto E, Kittaka-Katsura H, Adachi S, Watanabe F. Assay of vitamin B<sub>12</sub> in edible bamboo shoots. Vitamins (Japanese) 79:329–332, 2005.
- Mozafar A. Enrichment of some B-vitamins in plants with application of organic fertilizers. Plant Soil 167:305–311, 1994.
- Mozafar A, Oertli JJ. Uptake of a microbially-produced vitamin (B12) by soybean. Plant Soil 139:23–30, 1992.
- Sato K, Kudo, Y, Muramatsu K. Incorporation of a high level of vitamin B<sub>12</sub> into a vegetable, kaiware daikon (Japanese radish sprout), by the absorption from its seeds. Biochim Biophys Acta 1672:135–137, 2004
- Kittaka-Katsura H, Watanabe F, Nakano Y. Occurrence of vitamin B<sub>12</sub> in green, blue, red, and black tea leaves. J Nutr Sci Vitaminol 50:438– 440, 2004.
- 49. Kittaka-Katsura H, Ebara S, Watanabe F, Nakano Y. Characterization

- of corrinoid compounds from a Japanese black tea (Batabata-cha) fermented by bacteria. J Agric Food Chem 52:909–911, 2004.
- Nout MJR, Rombouts FM. Recent developments in tempe research. J Appl Bacteriol 69:609–633, 1990.
- Denter J, Bisping, B. Formation of B-vitamins by bacteria during the soaking process of soybeans for tempe fermentation. Int J Food Microbiol 22:23–31, 1994.
- Okada N, Hadioetomo PS, Nikkuni S, Katoh K, Ohta T. Vitamin B<sub>12</sub> content of fermented foods in the tropics. Rept Nalt Food Res Inst 43: 126–129, 1983.
- Dagnelie PC, van Staveren WA, van den Berg H. Vitamin B-12 from algae appears not to be bioavailable. Am J Clin Nutr 53:695–697, 1991.
- 54. Watanabe F, Takenaka S, Katsura H, Miyamoto E, Abe K, Tamura Y, Nakatsuka T, Nakano Y. Characterization of a vitamin B<sub>12</sub> compound in the edible purple laver, *Porphyra yezoensis*. Biosci Biotechnol Biochem 64:2712–2715, 2000.
- 55. Watanabe F, Katsura H, Miyamoto E, Takenaka S, Abe K, Yamasaki Y, Nakano Y. Characterization of vitamin B<sub>12</sub> in an edible green laver (*Entromopha prolifera*). Appl Biol Sci 5:99–107, 1999.
- Kittaka-Katsura H, Fujita T, Watanabe F, Nakano Y. Purification and characterization of a corrinoid-compound from *chlorella* tablets as an algal health food. J Agric Food Chem 50:4994

  –4997, 2002.
- 57. Miyamoto E, Watanabe F, Ebara S, Takenaka S, Takenaka H, Yamaguchi Y, Tanaka N, Inui H, Nakano Y. Characterization of a vitamin B<sub>12</sub> compound from unicellular coccolithophorid alga (*Pleuro-chrysis carterae*). J Agric Food Chem 49:3486–3489, 2001.
- Takenaka S, Sugiyama S, Ebara S, Miyamoto E, Abe K, Tamura Y, Watanabe F, Tsuyama S, Nakano Y. Feeding dried purple laver (nori) to vitamin B<sub>12</sub>-deficient rats significantly improves vitamin B-12 status. Brit J Nutr 85:699–703, 2001.
- Suziki H. Serum vitamin B<sub>12</sub> levels in young vegans who eat brown rice. J Nutr Sci Vitaminol 41:587–594, 1995.
- Rauma AL, Torronen R, Hanninen O, Mykkaken H. Vitamin B-12 status of long-term adherents of a strict uncooked vegan diet ("living food diet") is compromised. J Nutr 125:2511–2515, 1995.
- Pulz O, Gross W. Valuable products from biotechnology of microalgae.
   Appl Microbiol Biotechnol 65:635–648, 2004.
- 62. van den Berg H, Dagnelie PC, van Staveren WA. Vitamin  $B_{12}$  and seaweed. Lancet 1:242–243, 1988.
- 63. Watanabe F, Katsura H, Takenaka S, Fujita T, Abe K, Tamura Y, Nakatsuka T, Nakano Y. Pseudovitamin B<sub>12</sub> is the predominate cobamide of an algal health food, spirulina tablets. J Agric Food Chem 47:4736–4741, 1999.
- 64. Stüpperich E, Nexø E. Effect of the cobalt-N coordination on the cobamide recognition by the human vitamin B<sub>12</sub> binding proteins intrinsic factor, transcobalamin, and haptocorrin. Eur J Biochem 199: 299–303, 1991.
- Brandt LJ, Goldberg L, Bernstein LH, Greenberg G. The effect of bacterially produced vitamin B-12 analogues (cobamides) on the in vitro absorption of cyanocobalamin. Am J Clin Nutr 32:1832–1836, 1979.
- 66. Herbert V, Drivas G. Spirulina and vitamin  $B_{12}$ . JAMA 248:3096–3097, 1982.
- Herbert V. Vitamin B-12: plant sources, requirements, and assay. Am J Clin Nutr 48:852–858, 1988.
- van den Berg H, Brandsen L, Sinkeldam BJ. Vitamin B<sub>12</sub> content and bioavailability of spirulina and nori in rats. J Nutr Biochem 2:314

  –318, 1991
- Kay RA. Microalgae as food and supplement. Crit Rev Food Sci Nutr 30:555–573, 1991.
- Miyamoto E, Tanioka Y, Nakao T, Barla F, Inui H, Fujita T, Watanabe F, Nakano Y. Purification and characterization of a corrinoid-compound in an edible cyanobacterium *Aphanizomenon flos-aquae* as a nutritional supplementary food. J Agric Food Chem 54:9604–9607, 2006

- 71. Watanabe F, Miyamoto E, Fujita T, Tanioka Y, Nakano Y. Characterization of a corrinod compound in the edible (blue-green) algae, suizenji-nori. Biosci Biotechnol Biochem 70:3066–3068, 2006.
- 72. Watanabe F, Tanioka Y, Miyamoto E, Fujita T, Takenaka H, Nakano Y. Purification and characterization of corrinoid-compounds from the dried powder of an edible cyanobacterium, *Nostoc commune* (Ishikurage). J Nutr Sci Vitaminol 53:183–186, 2007.
- 73. Tucker KL, Olson B, Bakun P, Dallal GE, Selhub J, Rosenberg IH. Breakfast cereal fortified with folic acid, vitamin B-6, and vitamin B-12 increases vitamin concentrations and reduces homocysteine concentrations: a randomized trial. Am J Clin Nutr 79:805–811, 2004.
- Watanabe F. Vitamin B<sub>12</sub> from edible algae-from food science to molecular biology. Vitamins (Japanese) 81:49–55, 2007.